The Hall Algebra Approach to Quantum Groups by Claus Michael Ringel

By Claus Michael Ringel

Show description

Read Online or Download The Hall Algebra Approach to Quantum Groups PDF

Similar algebra & trigonometry books

Spectral theory of automorphic functions

Venkov A. B. Spectral idea of automorphic features (AMS, 1983)(ISBN 0821830783)

Diskrete Mathematik fuer Einsteiger

Dieses Buch eignet sich hervorragend zur selbstständigen Einarbeitung in die Diskrete Mathematik, aber auch als Begleitlektüre zu einer einführenden Vorlesung. Die Diskrete Mathematik ist ein junges Gebiet der Mathematik, das eine Brücke schlägt zwischen Grundlagenfragen und konkreten Anwendungen. Zu den Gebieten der Diskreten Mathematik gehören Codierungstheorie, Kryptographie, Graphentheorie und Netzwerke.

Structure of algebras,

The 1st 3 chapters of this paintings include an exposition of the Wedderburn constitution theorems. bankruptcy IV comprises the speculation of the commutator subalgebra of an easy subalgebra of an ordinary basic algebra, the research of automorphisms of an easy algebra, splitting fields, and the index relief issue thought.

Extra resources for The Hall Algebra Approach to Quantum Groups

Sample text

Preprint). : Tight monomials in quantized enveloping algebras. (Preprint). : Canonical bases in tensor products. (Preprint). [R1] Ringel, C. : Hall algebras. In: Topics in Algebra. Banach Center Publ. 26. (1990), 433–447. [R2] Ringel, C. : Hall polynomials for the representation–finite hereditary algebras. Adv. Math. 84 (1990), 137–178 [R3] Ringel, C. : Hall algebras and quantum groups. Inventiones math. 101 (1990), 583– 592. [R4] Ringel, C. : From representations of quivers via Hall and Loewy algebras to quantum groups.

Banach Center Publ. 26. (1990), 433–447. [R2] Ringel, C. : Hall polynomials for the representation–finite hereditary algebras. Adv. Math. 84 (1990), 137–178 [R3] Ringel, C. : Hall algebras and quantum groups. Inventiones math. 101 (1990), 583– 592. [R4] Ringel, C. : From representations of quivers via Hall and Loewy algebras to quantum groups. Proceedings Novosibirsk Conference 1989. Contemporary Mathematics 131 (Part 2) (1992), 381–401 [R5] Ringel, C. : The composition algebra of a cyclic quiver.

Phys. 102 (1990), 175-201. : Quivers, perverse sheaves and qunatized enveloping algebras. J. Amer. Math. Soc. 4 (1991), 365-421. : Affine quivers and canonical bases. Publ. Math. (IHES) 76 (1992), 111163. : Introduction to quantized enveloping algebras. (Preprint). : Tight monomials in quantized enveloping algebras. (Preprint). : Canonical bases in tensor products. (Preprint). [R1] Ringel, C. : Hall algebras. In: Topics in Algebra. Banach Center Publ. 26. (1990), 433–447. [R2] Ringel, C. : Hall polynomials for the representation–finite hereditary algebras.

Download PDF sample

Rated 4.44 of 5 – based on 21 votes