An introduction to Galois cohomology and its applications by Grégory Berhuy

By Grégory Berhuy

Downloaded from . this isn't Berhuy's publication "An advent to Galois Cohomology and its applications".
version 26 may well 2010

Show description

Read Online or Download An introduction to Galois cohomology and its applications [Lecture notes] PDF

Best algebra & trigonometry books

Spectral theory of automorphic functions

Venkov A. B. Spectral conception of automorphic capabilities (AMS, 1983)(ISBN 0821830783)

Diskrete Mathematik fuer Einsteiger

Dieses Buch eignet sich hervorragend zur selbstständigen Einarbeitung in die Diskrete Mathematik, aber auch als Begleitlektüre zu einer einführenden Vorlesung. Die Diskrete Mathematik ist ein junges Gebiet der Mathematik, das eine Brücke schlägt zwischen Grundlagenfragen und konkreten Anwendungen. Zu den Gebieten der Diskreten Mathematik gehören Codierungstheorie, Kryptographie, Graphentheorie und Netzwerke.

Structure of algebras,

The 1st 3 chapters of this paintings include an exposition of the Wedderburn constitution theorems. bankruptcy IV comprises the speculation of the commutator subalgebra of an easy subalgebra of a regular uncomplicated algebra, the research of automorphisms of an easy algebra, splitting fields, and the index aid issue concept.

Extra resources for An introduction to Galois cohomology and its applications [Lecture notes]

Sample text

There are two ways to proceed. First of all, notice that if L1 /k and L2 /k are two finite Galois extensions such that L1 ⊂ L2 , then the maps GL2 → GL1 , σ2 → (σ2 )|L1 and ZSLn (M0 )(L1 ) → ZSLn (M0 )(L2 ) are compatible, so we have a well-defined map inf L1 ,L2 : H 1 (GL1 , ZSLn (M0 )(L1 )) → H 1 (GL2 , ZSLn (M0 )(L2 )), 34 ´ GREGORY BERHUY which sends [α] to the class of the cocycle GL2 → ZSLn (M0 )(L2 ), σ2 → α(σ2 )|L . 1 (L) (L ) If we examine the classes [α ] and [α ] above, one can check that they are both equal to [α(LL ) ] when we ”push them in LL ”.

The desired equality then follows immediately. Now for λ ∈ Ω× , set xλ = ϕ−1 ((λ, 1, . . , 1)). 2 then yield NL⊗k Ω/Ω (xλ ) = NΩn /Ω ((λ, 1, . . , 1)) = λ. Therefore NL⊗k Ω/Ω is surjective and we have an exact sequence of GΩ modules 1 / / (1) Gm,L (Ω) / (L ⊗k Ω)× Ω× / 1, where the last map is given by the norm NL⊗Ω/Ω . It is known that the condition on L implies in particuliar that L is the direct product of finitely many finite field extensions of k. 1 yield the exact sequence (1) (L ⊗k 1)× → k × → H 1 (GΩ , Gm,L (Ω)) → 1, the first map being NL⊗k Ω/Ω .

Assume that L ⊗k Ω Ωn for some n ≥ 1. Then we have (1) H 1 (GΩ , Gm,L (Ω)) k × /NL/k (L× ). (1) Proof. The idea of course is to fit Gm,L (Ω) into an exact sequence of GΩ -modules. We first prove that the norm map NL⊗k Ω/Ω : (L ⊗k Ω)× → Ω× ∼ is surjective. For, let ϕ : L ⊗k Ω → Ωn be an isomorphism of Ωalgebras. We claim that we have NL⊗k Ω (x) = NΩn /k (ϕ(x)) for all x ∈ AN INTRODUCTION TO GALOIS COHOMOLOGY 31 L ⊗k Ω. Indeed, if e = (e1 , . . , en ) is a Ω-basis of L ⊗k Ω, then ϕ(e) = (ϕ(e1 ), .

Download PDF sample

Rated 4.39 of 5 – based on 33 votes